Base sizes for simple groups and a conjecture of Cameron
نویسندگان
چکیده
Let G be a permutation group on a finite set Ω. A base for G is a subset B ⊆ Ω with pointwise stabilizer in G that is trivial; we write b(G) for the smallest size of a base for G. In this paper we prove that b(G) ! 6 if G is an almost simple group of exceptional Lie type and Ω is a primitive faithful G-set. An important consequence of this result, when combined with other recent work, is that b(G) ! 7 for any almost simple group G in a non-standard action, proving a conjecture of Cameron. The proof is probabilistic and uses bounds on fixed point ratios.
منابع مشابه
Base sizes for sporadic simple groups
Let G be a permutation group acting on a set Ω. A subset of Ω is a base for G if its pointwise stabilizer in G is trivial. We write b(G) for the minimal size of a base for G. We determine the precise value of b(G) for every primitive almost simple sporadic group G, with the exception of two cases involving the Baby Monster group. As a corollary, we deduce that b(G) 6 7, with equality if and onl...
متن کاملCharacter Degrees and Random Walks in Finite Groups of Lie Type
In this paper we prove some mainly asymptotic results concerning the irreducible character degrees of .nite groups of Lie type. Applications are given to the study of the mixing time of random walks on these groups, with certain conjugacy classes as generating sets. In various situations we show that the mixing time is 2; this seems to be the .rst determination of an exact bounded mixing time f...
متن کاملSimple groups with the same prime graph as $D_n(q)$
Vasil'ev posed Problem 16.26 in [The Kourovka Notebook: Unsolved Problems in Group Theory, 16th ed.,Sobolev Inst. Math., Novosibirsk (2006).] as follows:Does there exist a positive integer $k$ such that there are no $k$ pairwise nonisomorphicnonabelian finite simple groups with the same graphs of primes? Conjecture: $k = 5$.In [Zvezdina, On nonabelian simple groups having the same prime graph a...
متن کاملNew characterization of some linear groups
There are a few finite groups that are determined up to isomorphism solely by their order, such as $mathbb{Z}_{2}$ or $mathbb{Z}_{15}$. Still other finite groups are determined by their order together with other data, such as the number of elements of each order, the structure of the prime graph, the number of order components, the number of Sylow $p$-subgroups for each prime $p$, etc. In this...
متن کامل2-recognizability of the simple groups $B_n(3)$ and $C_n(3)$ by prime graph
Let $G$ be a finite group and let $GK(G)$ be the prime graph of $G$. We assume that $ngeqslant 5 $ is an odd number. In this paper, we show that the simple groups $B_n(3)$ and $C_n(3)$ are 2-recognizable by their prime graphs. As consequences of the result, the characterizability of the groups $B_n(3)$ and $C_n(3)$ by their spectra and by the set of orders of maximal abelian subgroups are ...
متن کامل